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Situational Assessment for Intelligent Vehicles
Based on Stochastic Model and Gaussian
Distributions in Typical Traffic Scenarios
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Abstract—In intelligent driving, situational assessment (SA)
is an important technology, which helps to improve the cogni-
tive ability of intelligent vehicles in the environment. Uncertainty
analysis is very significant in situation assessment. This article
proposes an SA method based on uncertainty risk analysis. Under
uncertain conditions, according to the random environment
model and Gaussian distribution model, the collision proba-
bility between multiple vehicles is estimated by comprehensive
trajectory prediction. The proposed method considers collision
probabilities of different prediction points within and outside
the prediction range and obtains long-term accurate prediction
results. The method is suitable for the situation risk assessment of
sensor systems in the presence of unexpected dynamic obstacles,
sensor failures or communication losses in traffic, and different
environmental sensing accuracy. The experimental results show
that in the dynamic traffic environment, the proposed scenario
assessment method can not only accurately predict and assess
the situation risks within the prediction range, but also provide
accurate scenario risk assessment outside the prediction range.
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I. INTRODUCTION

IN INTELLIGENT alternative energy vehicles (IAVs), situ-
ational assessment (SA) plays a key role in understanding

the environment, especially in complex traffic scenes. Through
recognizing the information from the environment, the envi-
ronmental meaning could be understood, and meanwhile, the
future status is desired to be predicted [1]–[4]. By improving
the performance of SA, the actuation systems of IAVs includ-
ing brake-by-wire systems are conducive to making informed
decisions. Due to the existence of the noise in various sensors,
the uncertainty risks, including the loss of communication and
the failure of sensors have to be faced. That is to say, system
with 100% perceived reliability is hard to achieve. To perform
the decision of different detection quality or IAVs safety, SA
is required to consider different uncertainty risks. Moreover,
the vehicle communication technology, including, vehicle to
infrastructure and vehicle to vehicle in automotive technolo-
gies has become one of the important directions [5]–[8]. These
technologies contribute to the provision of abundant traffic
information. Importantly, the use of the information obtained
could greatly promote the efficiency of the traffic. However,
uncertainties caused by the noise of sensors and loss of
communication should not be ignored in practice [9].

Recently, most research on IAVs focuses on lower lev-
els to improve the performance of the vehicle safety, such
as the increment of the detection accuracy as well as the
enhancement of the communication reliability [10], [11]. In
our study, the main goal is to guarantee the safety of IAVs
by considering the uncertainty of the SA model. To deal
with these issues, extensive research has been developed over
the past decade [12]. Generally, support vector machines and
other machine learning algorithms are widely applied in the
prediction, due to the ability to solve various nonlinear prob-
lems by applying multiple features [13]–[16]. In the work of
Gonzalez et al. [17], a model of risk assessment was proposed
with the help of the inverse reinforcement learning algorithm,

2168-2216 c© 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on February 18,2022 at 01:10:25 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-5271-1280
https://orcid.org/0000-0002-7025-6365
https://orcid.org/0000-0003-4617-7349
https://orcid.org/0000-0003-2069-9544
https://orcid.org/0000-0002-1323-4952
https://orcid.org/0000-0003-2881-5095


GAO et al.: SA FOR INTELLIGENT VEHICLES BASED ON STOCHASTIC MODEL AND GAUSSIAN DISTRIBUTIONS 1427

to anticipate a long-term evolution of highway traffic scenar-
ios. However, the potential risks and future uncertainties were
not taken into account in the above-mentioned methods. To the
best of our knowledge, these factors are crucial for the safety
of IAVs [18]–[21]. As a result, the research of the uncertainty
and potential risk in environmental prediction is particularly
necessary. As mentioned earlier, SA using the awareness of
uncertainty risk is very important to study IAVs in sustainable
transportation scenarios, such as lane change [22]–[24] and
intersection [25]–[27]. Nevertheless, risks with a long time
and out of the prediction range are hard to be successfully
assessed according to these methods.

Corresponding solutions to the deficiencies of the above
methods were proposed by applying collision time (TTC)
and time to lane (TTL). The dynamic characteristics of TTC
and TTL are used to define risk functions, and construct
the risk assessment models named the dynamic characteris-
tics models. The model employing dynamic characteristics
projects dynamic parameters of the vehicle, including relative
speed, lateral acceleration of risk assessment, and distance.
Lee et al. [28] presented a probabilistic collision risk assess-
ment method for invisible vehicles, where the collision risk
probability is evaluated based on the predicted trajectory and
stochastic velocity model. Laugier et al. [18] pointed out
that TTC is an effective method in the range of time on
the straight line. In complex situations, such as intersections,
the efficiency of TTC as a risk indicator will remarkably
decrease. The safety field model with dynamic characteristics
was considered, and meanwhile, some complex mathemati-
cal models were also proposed in [29] and [30]. First, feature
relationships are defined in these models. Second, the func-
tion parameters could be adjusted by the driving data from
the real world [31], [32]. In the warning system of precolli-
sion, the driving safety model has been used and proved. In the
work of Kim et al. [33], the potential fields applying different
energy functions were developed to assess risks, and appro-
priate decisions could be made immediately. Although the
aforementioned approaches have sufficient strengths, potential
risks, and future uncertainties have not been well studied.

To deal with the uncertainty of models based on dynamic
characteristics, some extension schemes based on traditional
methods and machine learning algorithms were adopted
accordingly. In [34], the extended TTC was developed in nor-
mal traffic conditions so that the collision possibility could
be evaluated by using the communication loss uncertainty. On
the basis of the particle filtering, Kim et al. [35] proposed
a new probabilistic threat assessment method employed in
various complex traffic scenes without loss of generality.
Unfortunately, environmental changes and collision costs
were not taken into account. For better collision avoidance,
Jansson and Gustafsson [36] adopted the Monte Carlo tech-
nique by transforming sensor readings with stochastic errors
to the Bayesian risk. Moreover, a synthetical Bayesian method
was proposed for the criticality assessment under arbitrary
road environments [37]. Although the previous methods can
effectively solve the uncertainty problem, the uncertainty of
the sensing and position prediction is not incorporated into
these studies.

With the objective to handle future potential risks of the
traffic environment, many efforts were carried out to consider
the uncertainty risk. Lee et al. [38] considered the position
uncertainty of moving vehicles, and proposed a new method
to predict collision so that the collision can be successfully
avoided in black areas. In [39], a risk assessment scheme for
collision avoidance systems was proposed based on the time
sampling propagation method. This research involved estimat-
ing the uncertainty of the given vehicle’s current pose along
its predicted trajectory. Moreover, the target heuristic together
with the maximum speed heuristic was applied to target the
trajectory of unmanned aerial vehicles. In [40], by applying the
classical cost function definition, Katzourakis et al. introduced
an optimization method for autonomous driving and collision
avoidance to search for the optimal track. As an alternative
method, the uncertainty of sensors can be used to estimate
the collision risk by employing the hidden Markov model
(HMM) and Gaussian process (GP) to anticipate the collision
risk. Nevertheless, the collision probability and risk beyond the
scope of prediction were not mentioned. Scholliers et al. [4]
proposed a dead reckoning system, which can predict future
trajectories when the measurements of sensing are unavailable.
In [41], Kalman Filter (KF) algorithm was used to process
the dynamic noise covariance matrix, and thus more accurate
prediction results were obtained. However, the operation of
long-term prediction was not considered in this system.

The objective of this study is to assess situational risks con-
sidering uncertainties as shown in Fig. 1. In this study, the SA
method is proposed based on considering uncertainty risks
including environment predicting uncertainty. Based on the
stochastic environment model, collision probability between
multiple vehicles is estimated on the basis of trajectory
prediction, behavior, and trajectory planning. The SA method
considers the probabilities of collision at different predicting
points, the masses, and relative speeds between the possi-
ble colliding objects. In addition, risks beyond the prediction
horizon are considered with the proposition of infinite risk
assessments (IRAs). This method is applied and proved to
assess risks regarding unexpected obstacles in the traffic, sen-
sor failure or communication loss, and the imperfect detection
of the environment. The main contributions of this article are
summarized as follows.

1) The SA method is proposed, using the risk of uncertainty
by considering uncertainties in environmental prediction.

2) According to the stochastic environmental model, an
equivalent form of the SA method is obtained which
consists of risk assessments within the prediction hori-
zon and risk assessments beyond the prediction horizon.
Therefore, the collision probability of multiple vehi-
cles could be estimated by comprehensive trajectory
prediction.

3) Risks beyond the prediction horizon are considered with
the proposition of IRAs, which is adopted to raise the
forecast range.

The reminder of this article is organized as follows.
Section II describes the prediction of traffic environment and
collision assessment under different uncertainties. The third
section introduces risk assessment. In the fourth part, the
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Fig. 1. Framework of the SA based on uncertainty-risk awareness.

Fig. 2. Sensor deployment of Zhihong intelligent vehicle.

uncertainty risk awareness method is applied to different sce-
narios. Moreover, the results are introduced and analyzed.
Finally, Section V makes some concluding comments.

II. HARDWARE DEPLOYMENT OF ZHIHONG

INTELLIGENT VEHICLE

The sensor deployment of Zhihong intelligent vehicle is
shown in Fig. 2, which consists of 1 vision sensor, 7 radar
sensors, and 1 integrated position/attitude sensor. The vision
sensor is a camera (Mobileye C2-270), equipped on the back
of the frontal mirror. The radar sensors include 1 Millimeter-
wave (MMW) radar (Delphi ESR), 2 sixteen-line laser radars
(Velodyne VPL-16), 2 ultrasonic radars (Softec), and 2 MMW
radars (Chuhhang ARC1.01). The integrated position/attitude
sensor includes global positioning system (GPS) and inertial
navigation system (INS), which is from Huace. A detailed
description of each sensor is shown in Table I.

The central controller is an industrial personal computer
with Intel 3.3 GHz CPU, the operating system is Canonical
Ltd Ubuntu 16.04, and the software development platform
is Willow Garage ROS Kinetic. The central controller ful-
fills functions, such as sensor fusion, navigation, decision
making, path planning, as well as lateral and longitudinal
control.

III. COLLISION ASSESSMENTS UNDER PREDICTION

AND UNCERTAINTY

A. Stochastic Environmental Model

A traffic environment model describing the states of differ-
ent objects could be applied to evaluate the traffic environment.
As shown in Fig. 3, a stochastic environment model is
depicted. In the stochastic model, the uncertainty is rep-
resented by a probability model, usually expressed as a

TABLE I
SENSOR DESCRIPTION OF ZHIHONG INTELLIGENT VEHICLE

probability density function (PDF). For example, the PDF
could be a Gaussian distribution. In this article, a stochastic
model is used to model the traffic environment.
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Fig. 3. Stochastic model.

In this study, V = [x, y, v, θ, ω, a] is used to represent the
vehicle states, where v stands for the vehicle velocity; [x, y]
stands for the vehicle position; θ stands for the yaw; ω stands
for the yaw rate, and a represents the acceleration. O(V(t))
is used to represent the occupancy of the vehicle at time t.
si(V(t0), t), t ≥ t0 is used to represent the uncertainty states,
where t0 is the initial time, i stands for the ith object in the traf-
fic environment. And, i = 0 represents that the vehicle is ego
vehicle. That is, s0(V(t0), t), t ≥ t0 means the planning of the
ego vehicle. Moreover, the trajectory planning is determinis-
tic for ego vehicle. Plan(t0) = [s0(V(t0), t0), . . . , sn(V(t0), t0)]
stands for the initial probabilistic distribution of sensor track-
ing. Parameter n means the number of total objects in the
traffic environment. Filtering algorithms, including extended
Kalman filtering (EKF) and unscented Kalman filtering (UKF)
could be used to estimate the initial sate. The future state prob-
abilistic distribution of the vehicle can be described in the
form of

s(V(t0), t) = fpre(V(t0), t), t0 ≤ t ≤ t0 + thor (1)

where fi denotes the prediction function based on the latest
detecting results V(t0). thor is the prediction horizon. Notice
that, the prediction function fpre including method based on
physics and maneuver is studied comprehensively in [42].

B. Collision Probability Using Trajectory Prediction

In the traffic scenario, the collision probability of two
vehicles (Vehi, Vehj) is Prob(CVehi,Vehj). At a specific time
point, collision assessments of two vehicles using trajectory
prediction could be described as follows:

Prob
(
CVehi,Vehj(t)

)

=
∫ ∫

C
(
pVehi(t), pVehj(t)

) · s
(
pVehi(t), pVehj(t)

)

dpVehi dpVehj , t0 ≤ t ≤ t0 + thor (2)

where Vehi and t denote the vehicle i and the time, respec-
tively. pVehi(t) represents the predicting position of Vehi at
time t. Prob(pVehi(t), pVehj(t)) denotes the position probabil-
ity of the vehicle i and j. Moreover, t0 and thor stand for the
start predicting time and the predicting interval time, respec-
tively. Considering the shape of the vehicle, the collision index
C(pVehi(t), pVehj(t)) is given by

C
(
pVehi(t), pVehj(t)

)

=
{

1, O
(
pVehi(t)

) ∩ O
(
pVehj(t)

) �= 0
0, else

(3)

where O(pVehi(t)) denotes the area covered by the vehicle i.

C. Collision Probability for Planned Maneuver and
Trajectory

In our work, the collision probability of maneuvers can be
evaluated within the prediction range. These actions represent
abstract expressions of vehicle movements, and maneuvers
are constructed as probability distributions through GP [43].
GP can represent the path as a continuous function in a
probabilistic manner.

In terms of planned trajectories, j = 0 indicates that the
trajectory of Veh0 can be planned certainly, and collision
assessment at a specific time can be written into the following
equation:

Prob
(
CVehi,Vehj(t)

)

=
∫

C
(
pVehi(t), p(t)

) · s
(
pVehi(t)

)
dpVehi , t0 ≤ t ≤ t0 + thor.

(4)

IV. RISK ASSESSMENTS

A. Risk Assessments Within the Prediction Horizon

According to the trajectory prediction, risks can be eval-
uated by considering TTC, vehicle mass, and relative speed.
Therefore, the risk function for a specific predicted time is
given by

frisk
(
Vehi(t), Vehj(t)

) = Prob
(
CVehi,Vehj(t)

)
fcost(t)

t0 ≤ t ≤ t0 + thor (5)

where frisk(Vehi(t), Vehj(t)) is the risk at the predicting point t,
and fcost(t) reflects the cost function with regard to the
collision. The cost function fcost(t) is written by

fcost(t) = 1

thor
· GiGj

2
(
Gi + Gj

)‖vrel(t)‖2 (6)

where Gi and Gj are the weights of objects i and j, respectively;
vrel(t) represents the relative velocity of the two vehicles; t
denotes the assessment time, and thor = t − t0. Moreover,
fe = ([GiGj]/[2(Gi +Gj)])‖vrel(t)‖2 is regarded as the internal
energy function [44].

As a result, the risk assessment expressed by
frisk(Vehi(t0 : t0 + thor), Vehj(t0 : t0 + thor)) can be described
as the collision prediction distribution in the future time span

frisk
(
Vehi(t0 : t0 + thor), Vehj(t0 : t0 + thor)

)

=
∫ t0+tmax

t0
fcostProb

(
CVehi,Vehj(t)

)
dt (7)

tmax : Prob
(
CVehi,Vehj(tmax)

)

= max
t0≤t≤t0+thor

Prob
(
CVehi,Vehj(tmax)

)
. (8)

For complex and various traffic situations, risk assessment
should be taken into account in multiple vehicles. In a scene
scenei, the risk assessment of the vehicle i is written in the
following form:

f in
ra (Vehi, scenei)

= max
j

(
frisk

(
Vehi(t0 : t0 + thor), Vehj(t0 : t0 + thor)

))
(9)

with scenei being the scene i.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on February 18,2022 at 01:10:25 UTC from IEEE Xplore.  Restrictions apply. 



1430 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 52, NO. 3, MARCH 2022

Fig. 4. Without the risk assessment beyond the scope of prediction and
planning horizon.

B. Risk Assessments Beyond the Prediction Horizon

Even though the risk can be assessed within the prediction
range via trajectory prediction, risks beyond the time range
may end immediately with collision. As can be seen from
Fig. 4, a yellow vehicle approaches a white vehicle in the mid-
dle lane, while a blue vehicle (slow car) is located in the left
lane. Within the scope of prediction and planning, the yellow
vehicle should change to the correct lane. However, if there
is no risk assessment beyond the prediction range, the yellow
vehicle will be close to the road bottleneck. Consequently,
the yellow vehicle must slow down. In the SA and the
decision-making process, risks beyond the time limit should
be considered accordingly.

The risk assessment beyond the prediction range is
expressed in our work, as

f ∞
ra

(
Vehi, Vehj, scenei

)

=
∫ [

Prob
(
CVehi(t)

) · Prob
(
CVehj(t)

)

× �
(
Vehi, Vehj, scenei

) · fe
]
dpVehidpVehj (10)

where f ∞
ra (Vehi, Vehj, scenei) denotes the risk beyond the

prediction horizon, and �(Vehi, Vehj, scenei) is defined as
below

�
(
Vehi, Vehj, scenei

) =
{ �vij

�dij
, if �vij

�dij
> 0

0, if �vij
�dij

≤ 0
(11)

where �vij and �dij represent the predicted relative speed and
distance between the vehicle i and j, respectively.

C. Integrated Risk Assessments Using Gaussian Distributions

In our work, the SA is expressed as a comprehensive
risk assessment, combining risk assessment within and out-
side the prediction range. In the scene scenei, the integrated
risk assessment fra(Vehi, scenei) for the vehicle i is given
according to

fra(Vehi, scenei) = f in
ra (Vehi, scenei) + f ∞

ra (Vehi, scenei). (12)

Since the uncertainty of the environment is supposed to be
the Gaussian distribution N in our work, the state of vehicles
with respect to a certain time is

V(t) ∼ N
(
μ(t), σ 2(t)

)
(13)

Fig. 5. Data flow of vehicle platform.

where μ(t) and σ 2(t) are the mean and the covariance matrix
of uncertainty, respectively. V(t) can be obtained through
sensing and tracking.

Using historical sensing and sensor tracking results, the
uncertainty of the traffic environment can be predicted cor-
respondingly. For the predicting horizon thor, the predicting
results can be given by

{V(t + 1), V(t + 2), . . . , V(t + thor)}. (14)

Hence, a comprehensive risk assessment can be obtained
by (12). The prediction of other vehicles proposed in our work
is based on the combination of physical and motor methods,
which can not only ensure the short-term prediction accu-
racy but also maintain the long-term running trend. When the
onboard sensor fails or communication is lost within certain
time ranges, the predicted results can be employed to update
available information. The difference is that the variance of
prediction information may be greater than the variance of
sensors or communication devices.

The comprehensive risk assessment proposed in our work
can simulate the risk of traffic obstacles. Suppose the unex-
pected obstacle moves in a typical mode. For example, an
accidental pedestrian crossing a road should walk along a
crossing modality. The following uniform Poisson process can
be used to describe the probability of undesirable obstacles in
traffic scenes as:

Probunexp(Mk(t1) − Mk(t0) ≥ 1) = 1 − e−ετ (15)

where (t0, t1] is the time interval and τ = t1 − t0. Mk(t1) −
Mk(t0) ≥ 1 reflects that the number of undesirable obstacles
is not less than one during the time interval. ε = γk represents
the rate parameter, which implies the number of undesirable
obstacles per unite time. In addition, k denotes a scene. That is,
a different parameter value ε could be selected based on each
typical scene k. In terms of observations at different places or
moments, the corresponding rate parameters can be obtained.

V. EXPERIMENT AND RESULT ANALYSIS

A. Experimental Setup

The experiments were conducted using three experimental
vehicles as shown in Fig. 4, namely, yellow vehicle, blue vehi-
cle, and white vehicle. Each vehicle was equipped with a GPS
and an onboard computer to collect and record GPS position
and time readings, which were used for data synchronization.
Three acceleration sensors were attached to each vehicle to
obtain the longitudinal and lateral acceleration, respectively,
and all signals were sent to the controller area network (CAN)
bus. The velocity, accelerator-pedal position, and brake-pedal
ON/OFF signals were also collected from the CAN bus. During
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Fig. 6. Labeling GUI. The left area displays the real time LIDAR map and
images of the surrounding traffic environment. The top-right area shows the
CAN data curves.

TABLE II
DETAILED INFORMATION ABOUT THE DATABASE

the experiments, the signals from the CAN bus were trans-
mitted to the computer through a CAN card and recorded
along with GPS information in a text file. The data-collection
frequency was 50 Hz. The information flow is shown in Fig. 5.

B. Experimental Process

Regarding data collection, the estimating knowledge was
learned from the naturalistic driving data. The database used
in this research is for driving behaviors, namely, left and right
lane-change and lane keeping.

The experimental route was Changning Road, an urban four-
lane road in the high-tech zone of Hefei City. The experiments
were conducted under an unexpected obstacles scenario, a sen-
sor failure scenario, a communication loss scenario, and an
imperfect detection scenario. The experimental scenarios are
shown in Figs. 4, 7, 10, 12, and 14, respectively.

Running information was obtained by CAN, cameras, and
the LIDAR equipped on the data collecting vehicle. Running
information was stored. The data collection frequency was
100 Hz. The drivers were asked to drive naturally and maintain
their own driving styles.

From the collected data, the three behaviors mentioned
above were labeled manually using the labeling GUI shown in
Fig. 6. Part from the start to the first peak of the lane changing
cases were stored in the database as lane-change episodes and
used in this study.

In this experiment, the detailed information about the
database is introduced in Table II. One hundred and eighty
three episodes are applied as testing cases and the others as
training cases.

Fig. 7. Scenario regarding unexpected objects.

Fig. 8. Risk assessment of the unexpected pedestrians with different vehicle
velocity levels.

Fig. 9. Risk analysis with the distance to the right side of the truck.

C. Uncertainty Analysis in Application Scenarios

1) Situational Assessments Regarding Unexpected Objects:
Especially in urban areas, undesirable objects, such as bicy-
cles or pedestrians often occur due to incomplete perception
in undetectable regions. An intuitive example is depicted in
Fig. 7, in which two vehicles, a red truck and a yellow vehi-
cle, are considered. In this case, because the red truck is parked
on the right side of the road, it is hard for the yellow vehicle
to discover moving obstacles ahead, for example, pedestrians
crossing. It is possible that the yellow vehicle may hit pedestri-
ans in undetectable areas. It can be worse if the yellow vehicle
runs faster. In addition, as yellow vehicle advances, it becomes
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more confident about whether there are pedestrians crossing
the road. This kind of situation widely exists in the current
urban traffic environment.

For this case, although there are no actual pedestrians cross-
ing in front of the red truck, the yellow vehicle is required to
assess the potential risk of crossing pedestrians because of
the presence of undetectable areas. Because the probability
of pedestrians appearing in each interval is given in (15), the
collision risk for each prediction point can be expressed as

frisk
(
Vehi(t), Vehj(t)

)

= Probunexp · fra
(
Vehi(t), Vehj(t), scenei

)
(16)

where frisk(Vehi(t), Vehj(t)) denotes the collision risk with
regard to unexpected pedestrians at the predicting time t,
Probunexp represents the appearing probability of undesir-
able pedestrians, and fra(Vehi(t), Vehj(t), scenei) signifies the
collision risk of a pedestrian crossing.

As the yellow vehicle approaches the parked red truck,
the vision of the yellow vehicle keeps changing. Thus, with
the continuous decrease of undetectable area, the starting
intersection point of accidental pedestrians will be further
enlarged in the lateral direction. Under this case, the starting
intersection point is expressed in the following form:

w · cot θ = Ls − Lo (17)

where Ls and Lo denote the lateral distance between the yellow
vehicle and start-crossing point, and the yellow vehicle and
parking red truck, respectively. w expresses the width of the
human. θ is the angle of the undetectable region.

Assume that the velocity planning of the yellow vehicle is
constant and yellow vehicle is located in the middle of the
lane. For the convenience of comparing results, the invariant
part in SA is supposed to be a unit equal to 1. The above
situation is also suitable for other scenarios in our work. The
results of risk assessment are analyzed as follows. It is easy
to see in Fig. 8 that, the risk regarding accidental pedestrians
increases with the planned speed of the vehicle. This is in
line with our daily driving experience. When we encounter a
large truck parked on one side and consider the crossing of
unexpected pedestrians, the risks we feel increases with the
speed. To evaluate the risk of the distance on the right side
of the truck, the result depicted in Fig. 9 manifests that when
the yellow vehicle is far away from the right side of the truck,
the corresponding risk of accidental pedestrians is increasing.
Thus, the risk is maximized. After that, as the impercepti-
ble area becomes smaller, the risk of accidental pedestrians
is reduced. In addition, when the planned speed decreases,
the risk decreases and the maximum risk point is gradually
approaching the right side of the truck. As we know, it is also
consistent with the daily experience of driving.

2) Situational Assessments Regarding Sensor Failure or
Communication Loss: In this study, we assume that vehicles
are all connected. The state and uncertainty information can
broadcast to clouds or other vehicles [30]. When the communi-
cation is lost or the sensor fails within a certain period of time,
the prediction result is used as the continuous initial state and
distribution of trajectory prediction. When the communication

Fig. 10. Lane-keeping scenario when sensor failure or communication loss.

Fig. 11. Risk analysis of lane-keeping scenario when sensor failure or
communication loss.

or sensor is reestablished after a short loss, the estimation
result including the uncertainty information from the detec-
tion signal is used as the latest initial state and probability
distribution.

In this section, lane keeping and lane changing scenarios are
studied for the application of SA in the case of sensor failure or
communication loss, as shown in Figs. 9 and 10. In the above
two scenarios, two vehicles are on the right of the running
side. tloss represents the time of sensor failure or the time of
communication lost, i.e., time interval when information can-
not be transported. Before tloss, a dynamic Bayesian network
can be employed to estimate the maneuver probability distri-
bution as an initial maneuver distribution. The initial maneuver
distribution can be expressed as follows:

Prob0
M0

=
(

Prob0
1, . . . , Prob0

n, . . . , Prob0
p

)
(18)

where Prob0
M0

represents the maneuvers probabilistic distribu-
tion at the initial time t0, Prob0

n is the nth maneuver probability,
and P denotes the maneuvers size.

The switching probability of maneuver in the case of sensor
failure or communication loss can be defined by using the
first-order Markov theory, as follows:

Probk
Mt

= Mat
[
Probk−1

Mt

]T
(19)
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Fig. 12. Lane changing scenario when sensor failure or communication loss.

where Mat[·] stands for the probability switching matrix;
Probk

Mt
represents the probabilistic distribution of maneuver

at step k for the communication loss or sensor failure.
Therefore, under the conditions of the communication loss

and sensor failure, the risk estimation could be defined as

f k
ra(Vehi, scenei) =

P∑

n=1

Probk
nfra

(
Vehi, scenei|mj = n

)
(20)

where f k
ra(Vehi, scenei) represents the risk of the communica-

tion loss and sensor failure at step k, P represents maneuvers
size of Vehicle j with mj = n, and f k

ra(Vehi, scenei|mj = n)

stands for the maneuver risk of Vehicle j.
In the case of lane-keeping which is shown in Fig. 10, the

yellow vehicle has no information about the red vehicle dur-
ing the process of communication loss. Therefore, the yellow
vehicle can only evaluate the situation using its historical data,
and the prediction result is used as sensing information in an
extraordinary time.

The relationship between sensor failure or communication
loss time and risk is shown in Fig. 11. The result means that the
risk increases with the increase of duration of communication
loss or sensor failure. In the case of lane keeping, the yellow
vehicle may change to other lanes when communication loss
or sensor failure. That is, this risk assessment has considered
uncertainty risks during communication loss or sensor failure.
If the risk of uncertainty in adjacent lanes is ignored, even
a white vehicle with no vehicle in the same lane can cause
serious traffic accidents.

The lane change scenario is shown in Fig. 12. The
information is lost when changing the lane. A prediction result
could be used to replace the initial estimation information of
each loss time step during the period of information loss. The
prediction should use historical data.

The risk analysis of lane change scenarios in the presence
of sensor failure or communication loss is shown in Fig. 13.
There are two cases: one is the risks considering uncertainty
prediction, and the other is the risks without considering uncer-
tainty prediction. The results of the two cases are compared
and analyzed. The comparison results imply that the risk with-
out considering the prediction uncertainty is higher than the
risk considering the prediction uncertainty, during sensor fail-
ure or lane change scenario when the prediction uncertainty
is considered. Therefore, during communication loss or sensor

Fig. 13. Risk analysis of lane changing scenario when sensor failure or
communication loss.

Fig. 14. Imperfect sensing with different accuracies scenario.

failure, a risk assessment considering the risk of uncertainty
predicted should be taken into account to ensure higher safety.

3) Situational Assessments Regarding Imperfect Sensing
With Different Accuracies: In lane change scenarios, SA in the
case of incomplete sensing with different accuracy is investi-
gated. In this case, dynamic Bayesian networks are applied
to identify the lane change of yellow vehicle in adjacent
lanes [45]. Because the covariance of Gaussian distribution
has the ability to represent imperfect perception, Gaussian dis-
tribution can be used to represent the perceptual information.
For example, as shown in Fig. 14, the yellow vehicle is an
intelligent vehicle, and the risk of the white vehicle located
in the adjacent lane must be known. First, the yellow vehicle
can get relevant information about the white vehicle through
on-board sensors. Second, the white vehicle can use commu-
nication technology to send relevant information with higher
accuracy. Obviously, different sensing accuracy may cause dif-
ferent risks to traffic scenes for yellow vehicle. Therefore,
according to different sensing accuracy, this study can obtain
uncertainty awareness risks.

The risk analysis of different detection accuracy under lane
change is shown in Fig. 15. There are two cases: one is the
risks of high detection uncertainty, and the other is the low
detection uncertainty of different sensors. As shown in Fig. 15,
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Fig. 15. Risk analysis regarding different detecting accuracies.

the compared results demonstrate that scenario risks might be
caused by different sensing uncertainties. The same relative
longitudinal distance between a red vehicle and a white vehicle
might be a high risk, which could be caused by the high sens-
ing uncertainty. That is, SA is sensitive to the risk of sensing
uncertainty. Above results also mean that sensor configurations
of IAVs are able to determine the decisionmaking policies,
because different sensing capabilities lead to uncertainty risks.

VI. CONCLUSION

Considering the uncertainty of real-time traffic environment
prediction and perception prediction, the SA scheme based on
uncertainty risk awareness in real-time traffic environment is
proposed. In our study, the risks are evaluated within and out-
side the prediction range. In the prediction range, the collision
risk is assessed via the trajectory prediction under the uncer-
tainty containing the detection uncertainty. The internal energy
depends on the weight of the colliding object and the relative
speed. Moreover, the final forecast and planning parameters
under uncertainty are used to evaluate risks beyond the forecast
range. Finally, the SA scheme via uncertainty risk awareness is
demonstrated in three scenarios, that is, scenarios with acci-
dental obstacles, sensor failure or communication loss, and
incomplete perception with different accuracy.
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